US009058129B2

a2 United States Patent

Sengupta

(10) Patent No.:

(45) Date of Patent:

US 9,058,129 B2
Jun. 16, 2015

(54) SYSTEM AND METHOD OF CORRELATION

(735)

(73)

")

@

(22)

(65)

(1)
(52)

(58)

(56)

AND

CHANGE TRACKING BETWEEN

BUSINESS REQUIREMENTS,
ARCHITECTURAL DESIGN, AND
IMPLEMENTATION OF APPLICATIONS

Inventor: Somenath Sengupta, Edison, NJ (US)

Assignee: ORACLE INTERNATIONAL
CORPORATION, Redwood Shores,
CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 2275 days.

Appl. No.: 11/273,674

Filed: Nov. 14, 2005

Prior Publication Data

US 2007/0112879 Al May 17, 2007

Int. CL.

GO6F 9/44 (2006.01)

U.S. CL

CPC e GO6F 8/10(2013.01)

Field of Classification Search

USPC

717/100, 102

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

6,654,932
6,963,875
7,080,088
7,222,302
7,437,358
7,650,592
2003/0023953
2003/0135840
2004/0133875
2005/0015293
2005/0125438
2006/0206348

Bl* 11/2003 Bahrsetal.ccc........ 715/210
B2* 11/2005 Mooreetal.ccooecvervrnrnne 1/1
Bl* 7/2006 Lau ..occocoovvieriiiiieiieiierien 1/1
B2* 5/2007 Hauseretal. 715/734
B2* 10/2008 Arrouyeetal. 707/4
B2* 1/2010 Eckels et al. 717/125
Al* 1/2003 Lucassen et al. ... 717/106
Al* 7/2003 Szabo etal. 717/102
Al* 7/2004 Kramer 717/101
Al* 1/2005 Hennetal.ccoevrvvrneen. 705/9
Al* 6/2005 Krishnaswamy et al. 707/102
Al* 9/2006 Chenetal.ccoevvvvrnneen. 705/1
OTHER PUBLICATIONS

Dziri et al. (Combining architecture exploration and a path to imple-
mentation to build a complete SoC design flow from system specifi-
cation to RTL, Design Automation Conference, 2003. Proceedings of
the ASP-DAC 2003, p. 219-224).*

Leff et al. (Web-Application Development Using the Model/View/
Controller Design Pattern, Proceedings of the Sth IEEE International
Conference on Enterprise Distributed Object Computing, 2001).*

* cited by examiner

Primary Examiner — Hang Pan
(74) Attorney, Agent, or Firm — Meyer IP Law Group

&7

ABSTRACT

A system can use metadata and metadata mappings to track
changes between business requirements, architectural design

and implementation.

view metadata

view metadata

116

5,801,958 A * 9/1998 Dangelo et al. 716/18 20 Claims, 6 Drawing Sheets
100
A 110
metadata validation (118 120
component
rules engine ’— ';?:g;lg
A A
102 104 106 108 112 114
business businass view architectural view architectural implementation implementation

metadata

Underlying Software

I RNOId

US 9,058,129 B2

aJsemyyos Bukpapun

Sheet 1 of 6

Jun. 16, 2015

S
A < A i
9
Y / y
ejepejow ejepelow MolA ejepeiow MoIA
uopeyuawaduw uonejuawaiduwi {emnjosyyose MIIA [EINOBHLDIE MBIA SSBuIsng ssauisng
141 801 904 v0l rA(]
Y A4 A
MMMMM”__ suBua sajnu
> >
< < Juauodwod
oclt gLl uoyeplieA ejepejow

U.S. Patent

¥ o001

US 9,058,129 B2

Sheet 2 of 6

Jun. 16, 2015

U.S. Patent

cNNOI4
BSuiddew
onuewss auibua sajns
8027\ .
< jusuodwoo
1] 4 UOHEPIA BIEPEIBL
gjepejaw
uonedydde gjepejow gjepejow
{euoyippe || uopeoidde | uoneondde
2 > >
< < <
9l¢ 1474 Zle w uonuyep ejepeaw
A A A A
0c¢c
Y \ J A
suoijes|dde jeuomppe |} uonesydde | uoyeoidde

)

(

90¢

[V 4

US 9,058,129 B2

Sheet 3 of 6

Jun. 16, 2015

U.S. Patent

€ RANOIL

EMOINIOMN W
CMOIPIOM &
IMOIIOM [

F v ~
LoV YR -

uonoy

US 9,058,129 B2

Sheet 4 of 6

Jun. 16, 2015

U.S. Patent

¥ 3©NOId

s1ojourered Ayjiqero
1X9)UO)) X —
[euonjoRSURI],

[onuod 1330
JO UOIBO0AU]—

Kep-om] N
Kep-3uQ
woddns yoeq [[BD
Em_cmsooEA/
UON)BULIOJSURL],
«—
V DSIN 10} BSOSy |
1op[ing UoIsId3g
JOUD)SIT JUIAT -

e~

221N0S JUIAg—]

Burdno) asoo

BN«
V uonoy
V AIAROY jusay

US 9,058,129 B2

Sheet 5 of 6

Jun. 16, 2015

U.S. Patent

S RINOIL

11)M pajerdosse
20IN0831 YX K

XL VX~

Aepunoq X 1—

ooy €

IoUSI| WUIAT—

YUIS JUBAS

Aeipauniayul jJo

\Qm:\ms UONEJOAU
ssaoouid gng «
ooy «

NUIS JUIAT —

-

TUOTTEO0AU] $S990.1d
gng 0a11q «
§sa001d qng «
1X8ju0)

«

U.S. Patent Jun. 16, 2015 Sheet 6 of 6 US 9,058,129 B2
Component /720%5
#l method3 el
method4 stave]
Component#2 | methodl
method?2
e method3
- cthod4
4
i

Component#3 gt

ethod2
ethod3
ethod4

Component#4 methodl
p method2
ethod3—1

l method4

FIGURE 6A

] [Componenti3:mettiod !
T commnrimeosd 7

ent#4methodll\' 3 -Compon,ent#Z:method4

[‘ Componeh:t#}:mé‘tho]i

1. method2 of Component#3 accesses statel and state2
2. method4 of Component#2 accesses statel and state2

Component#1 and Component#2 are accessing the states associated with
Component#3 and Component#2 in reverse order

FIGURE 6B

US 9,058,129 B2

1
SYSTEM AND METHOD OF CORRELATION
AND CHANGE TRACKING BETWEEN
BUSINESS REQUIREMENTS,
ARCHITECTURAL DESIGN, AND
IMPLEMENTATION OF APPLICATIONS

BACKGROUND OF INVENTION

An enterprise-level computing environment can support
multiple actors, e.g. business analysts, architects, developers,
and administrators. Each actor can supports a specific role in
the environment, and conflicts may arise between those roles.

For example, an architect focused on ensuring that the
applications within the environment adhere to strict require-
ments and dependencies may deviate from the original busi-
ness plan. Additionally a developer or administrator updating
a particular module may inadvertently jeopardize the archi-
tectural integrity of the application.

It is important to maintain the integrity of software code
among the different stages of the lifecycle of an enterprise-
level system, e.g. business requirements, architectural con-
straints, and development/administration changes.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of a system of one embodiment of the
present invention.

FIG. 2 is a diagram of another system of an embodiment of
the present invention.

FIG. 3 is a diagram of an exemplary business definition of
an enterprise-level system.

FIG. 4 is a diagram of an exemplary semantic mapping.

FIG. 5 is a diagram of an exemplary complex semantic
mapping.

FIGS. 6A and 6B are diagrams of an exemplary “Call
Sequence” across components.

DETAILED DESCRIPTION

Multiple actors support different roles throughout a soft-
ware application lifecycle. The following provides a high-
level overview of the actors and their roles in one embodi-
ment:

1. Business analysts define the business processes and poli-

cies for an application project.

2. Architects design the software components and applica-
tion interconnections based on the business require-
ments.

3. Developers and/or administrators write code and/or con-
figure metadata according to the architectural specifica-
tions.

Typically, the actors work in isolation of one another, using
avariety of proprietary tools. They update their work without
a mechanism to correlate their changes at different phases of
the application life cycle.

FIG. 1 shows an exemplary system of one embodiment.

The system 100 can include a business view 102 associated
with business view metadata 104, an architectural view 106
associated with architectural view metadata 108, and a com-
ponent 110 to validate the business view metadata with the
architectural view metadata such that changes to the business
view result in changes to the business view metadata that is
then validated against the architectural view metadata.

The business view, architectural view, and implementation
metadata can be created automatically as the corresponding
views are created or modified.

30

35

40

45

50

2

The system can further include an implementation 112
associated implementation metadata 114.

The component 110 can validate the architectural view
metadata with the business view metadata such that changes
to the architectural view result in changes to the architectural
view metadata that is then validated against the business view
metadata.

One embodiment is a system comprising an architectural
view associated with architectural view metadata; an imple-
mentation associated with implementation metadata; and a
component to validate the architectural view metadata with
the implementation metadata such that changes to the archi-
tectural view result in changes to the architectural view meta-
data that is then validated against the implementation meta-
data.

Component 110 can further validate the implementation
metadata with the architectural view metadata such that
changes to the implementation result in changes to the imple-
mentation metadata that is then validated against the archi-
tectural view metadata.

The business view 102, architectural view 106 and imple-
mentation 112 can be views into underlying software 116.
The metadata can be constructed automatically, such as with
an Integrated Development Environment (IDE) tool as the
corresponding view are modified. The metadata can alter-
nately be created manually. The metadata can be validated
with a rules engine 118. The rules engine 118 can use a
metadata mapping 120 to determine conflicts between the
metadata.

The component 110 can be used to determine conflicts
between the views. The component 110 can be used to create
warnings to users when one of the views is to be changed and
this would produce a conflict in the metadata. The views can
be exposed by a development tool such as an IDE.

FIG. 2 shows an example of a system of one embodiment.

A system 200 can comprise multiple applications 202, 204
and 206 with associated metadata; and a component 208
using a semantic mapping 210 between metadata 212, 214
and 216 of the applications 202, 204 and 206 to check for
conflicts.

The component 208 can check for deadlocks. A metadata
definition 220 can be maintained for the existing applications
202, 204 and 206. The metadata definition here can indicate
the associated resources and the sequences of resource access
for each application Metadata for a new application can
mapped against the metadata definition to detect the cyclic
dependency of resources.

Actors can benefit from a tool that:

1. Correlates changes between business process and policy

definition, and architectural design and implementation.

2. Provides interactive experience with multi-way editing.

3. Propagates the changes from architectural-level to busi-
ness-level.

4. Ties together the business use case, architectural design,
and code implementation details via a semantic valida-
tion language framework.

An exemplary two-way editing mechanism enables you to:

1. Assemble reusable modules to build composite applica-
tions.

2. Maintain multiple views of the system so actors can
move back and forth between them.

3. Review the impact of a particular architectural change on
the business use case.

4. Review the impact of a particular code change on the
architectural design.

The business requirement can be complete and presented

in a standard way. Behavior of each architectural component

US 9,058,129 B2

3

and its methods, which can affect the architecture, should be
exposed via annotations and/or metadata. Business require-
ments can be mapped at the same level of granularity as the
methods whose semantics are exposed as metadata.

This technique can use semantic mapping to correlate dif-
ferent stages of an application life cycle in an enterprise
system, such as business requirement definition, logical
architectural design, physical architecture/deployment, and
so on. This approach can validate the end-to-end architectural

consistencies in the context of security, multi-level system 10

operation and management, and so on.

The following features can be use required to enable cor-
relation and tracking of changes implemented by different
stages of an enterprise system:

A metadata-based model generation derived from the busi-

ness requirements (business view) (metadata set#1).

Logical architecture (architectural view) construction

using another set of metadata (metadata set#2).

Physical architecture implementation view achieved by

overlaying a metadata set (metadata set#3) that defines

more details of the physical architecture on top of meta-
data set#2.

The metadata-driven semantic relationship can be lever-
aged to compute the impact of the actions. For example:

1. The architect changes the physical architecture, e.g.

introduces new architectural element.

A set of algorithms can be to re-compute the component
relationship graph, reflecting the changed logical
architecture of the system.

2. Business user changes the business requirement by

updating the metadata set#1.

A setof algorithms can be used to compute the impact of
that change within the logical and physical architec-
tures.

FIG. 3 presents an exemplary business definition of an
enterprise-level system. The usage flow of this exemplary
business definition is as follows:

1. Workflow1 is invoked via a message invocation

2. Action2 of Workflow1 sends a message called Msg-A to

a message sink

5

4

3. When that message sink receives the message called
Msg-A, Workflow2 gets invoked asynchronously
4. Actionl of Workflow2 invokes the sub-workflow called
Workflow3 within a context called Contextl. Actionl
does not block execution
5. Workflow3 gets executed in Context1
6. Workflow3 and Workflow2 run parallel
Example of Meta information related to business modeling
based on different kinds of Workflow start nodes (Metadata
Setifl)
1. Start Nodes
a. S1
i. Event activity
1. Receive Message A

" 2. Take Action A
b.S2
i. Event activity
1. Synchronize on message sync
20 2. Event Sync fires the Signal A when condition A is
satisfied
c. S3
i. Spawning new workflow
1. Context of the spawning
25 a. Process
i. A child process living in the context of parent
process
b. Compensation of some other actions
c. The spawned process should be Atomic with
30 respect to the parent process
d. The spawned process inherits all the state Prop-
erties from the parent
All the metadata described above can be presented via a
semi-structural language, e.g. XML..

35 In the example of FIG. 4, the semantic mapping is done
between the metadata set#1, defining a start node of a busi-
ness workflow, to metadata set#2, defining the logical archi-
tecture of that start node. Once the mapping relationship is
defined, it can be reused to correlate changes across both sets
of metadata.

Metadata Set#1 Mapping logistic Metadata Set#2
Start Node S1 Event Activity 1. Associate an event 1. Event source
Event A source with event A to 2. Event Listener
Receive enable event 3. Decision Builder
Msg A generation. 4. Transformation
Action A 2. Associate an event mechanism
Critical listener to consume 5. Call back support
Loose Coupling event A. 6. Reliability
3. A Decision Builder parameters

should be associated

with the start node to

filter out unwanted
events. Otherwise,
there is no way to
ensure that only the

receipt of message A

can start the

Workflowl.

If business requires

loose-coupling, start

node should be

associated with a

transformation

mechanism.

5. Ifthe communication is
two-way, a callback
support has to be
associated with
Workflowl.

US 9,058,129 B2

-continued

Metadata Set#1 Mapping logistic

Metadata Set#2

6. If the business process
is critical to the
organization, proper
reliability parameters
should be selected to

Note: Mapping is rule-based to
support dynamic changes and
late bindings across two sets of
metadata. This rule-based
approach helps to resolve
conflicts across a large set of
manually generated mapping
logistics.

As an example of impact to metadata set#1 caused by a
change in metadata set #2, if any of the metadata is updated
from metadata set#2, e.g. event source and event listener are

structs building that context. Once the mapping/relationship
is defined manually, it can be reused to correlate changes
across both sets of metadata.

Metadata Set#1 Mapping logistic Metadata Set#2
Context Contextl 1. If processes within 1. Event Sink
contextl Sub Process the same context 2. Event listener
Direct Sub process synchronize over a signal, 3. Atomic
invocation they should be connected -TX boundary
Atomic to the same event sink. -XA Tx

Sub process invocation
via use of intermediary
event sink

XA resource
associated with it

2. Each sub-process
should be associated with
an event listener.

3. If a child process is
created within an atomic
context, it should be
associated with a Tx
boundary, XA resources,
and so on.

Notes:

Any Tx

demarcation associated
with a child process should
result in a warning, if there
is a Tx associated with the
parent process.

Deletion of the

event sink can prevent the
invocation of sub
processes. The persistent
mapping logistic is used to
detect the dependencies.
Mapping is rule-

based to support dynamic
changes and late bindings
across two sets of
metadata. This rule-based
approach helps to resolve
conflicts across a large set
of manually generated
mapping logistics.

deleted or replaced by a synchronous call, the persistent map-
ping logistic helps to detect the violation of the constraints
defined by the business requirement definition e.g. meta data
set#l. As an example, if an event listener is deleted, the
business requirement definition (defining the message-based
workflow invocation) is violated and this violation can be
detected by checking the mapping information between the
event listener and the corresponding workflow start node.
The example of FIG. 5 describes an example of complex
semantic mapping, the mapping is between the metadata
set#1, defining the context of a business workflow invocation,
to metadata set#2, defining the logical architectural con-

55

60

65

Metadata-based semantic definition can be used for archi-
tectural components to support early detection of deadlock.
Below is an example of metadata associated with architec-
tural components to resolve architectural inconsistencies.
Metadata Set associated with architectural components
Type: Type of the architectural component such as class/
package
Parent Element: Parent component in the context of inher-
itance [object-oriented paradigm]
References to Elements: associative relationship with
other architectural components
References by Element: List of other architectural compo-
nents referring to this component

US 9,058,129 B2

Public states

Private states

Concurrent-Group: Reflects the list of components that can
be used concurrently

Is Persistent
Does persistence mechanism involve:

Blocking/non-blocking DB call
Callback from DB
Blocking/non-blocking Connector call
Control members that are persistent
Long running query

Simple query

Access to shared resources

Does access mechanism involve:
Memory resource
DB resource
Blocking/non-blocking invocation
Is it locked
What kind of lock

The metadata defined here can be used to create a call graph
for discovering the potential deadlock in the early phase of
design. The following example explains the technique in
detail.

A sample “Call Sequence” across the components is pre-
sented in FIGS. 6A and 6B.

FIG. 6B represents the call stack of the calling sequence
depicted in the Call Sequence diagram. This call stack is used
to detect the deadlock using the following methodology:

1. Identify the methods (from various components) in a

particular concurrent group.

2. For the first component in the group, make a sequential
list of accessed resources (states, DB Tables).

3. Repeat the step for all the methods in the call stack.

4. Check the ordering of each of the accessed resource list
to make sure there is no reverse ordering.

5. Repeat the process for other methods in the concurrent
group.

On embodiment of the present invention can:

1. Use the metadata-based correlation between the busi-
ness requirement definition and architectural design.

2. Use the metadata-based correlation between architec-
tural design and implementation.

3. Track changes in business requirement definition origi-
nated from a deliberate change in architectural design.

4. Enable any application exposing their semantics via
metadata to be part of a large-scale metadata definition
that is referenced by multiple applications. Each appli-
cation can be added iteratively to an integrated metadata
definition by using semantic mapping between the meta-
data of cross-referenced applications.

5. Identify end-to-end architectural aspects across multiple
application/service modules such as deadlock detection,
end-to-end security, and so on.

The system can:

1. Provide a centralized control on the different states of a
software life cycle

2. Save the cost of extensive debugging

3. Multiple actors can be accommodated to work seam-
lessly on different parts of the software life cycle

The foregoing description of preferred embodiments of the
present invention has been provided for the purposes of illus-
tration and description. It is not intended to be exhaustive or
to limit the invention to the precise forms disclosed. Many
modifications and variations will be apparent to one of the
ordinary skill in the relevant arts. The embodiments were
chosen and described in order to best explain the principles of
the invention and its partial application, thereby enabling

10

15

20

25

30

35

40

45

50

55

60

65

8

others skilled in the art to understand the invention for various
embodiments and with various modifications that are suited
to the particular use contemplated. It is intended that the
scopes of the invention are defined by the claims and their
equivalents.

What is claimed is:
1. A system for correlating changes across different phases
of a life cycle of a software application being developed,
comprising:
a computing environment, including a microprocessor, for
use by multiple actors during development of a software
application, wherein the computing environment is con-
figured to display a business view, an architectural view
and a code implementation view, each view tied to the
same software application and representing a different
phase of the software application life cycle;
a plurality of metadata,
wherein each metadata is associated with a particular
view, and automatically generated when that particu-
lar view is created,

wherein when a change is made to a view of the software
application, a metadata associated with the view is
modified in accordance with modified relationships
among components within that view, wherein the
modified relationships are re-computed in response to
the change using a set of algorithms, and

wherein the change is automatically propagated to meta-
data associated with the other views; and
a rules engine including a metadata mapping component,
wherein the metadata mapping component includes a
defined semantic mapping among the different views;
wherein, upon determining that a metadata associated with
a particular view has been modified, the rules engine
uses the metadata mapping component to
automatically validate the metadata associated with the
modified view with metadata associated with the
other views in accordance with a plurality of rules and
the defined semantic mapping, and

indicate any conflict between the modified view and the
other views before allowing the change to be made to
the metadata associated with the other views.

2. The system of claim 1, wherein the defined semantic
mapping is used by the system to correlate changes across the
different views; and

wherein if a metadata associated with a view is updated by
an actor, the metadata mapping component is used by the
rules engine to detect any violation of the constraints
defined by metadata associated with the other views.

3. The system of claim 1, wherein the software application
defines a business workflow, and wherein metadata associ-
ated with the business view defines one or more start nodes of
the business workflow.

4. The system of claim 1, wherein the metadata of the views
are defined using one of a semi-structural language.

5. The system of claim 4, wherein the semi-structural lan-
guage is extensible markup language (XML).

6. The system of claim 1, wherein each metadata indicates
associated resources and sequences of access to the associ-
ated resources for the software application.

7. The system of claim 1, wherein the metadata associated
with the architectural view is configured to create a graph for
discovering potential deadlocks in a design phase of the soft-
ware application life cycle.

8. A method for correlating changes across different phases
of a life cycle of a software application being developed,
comprising:

US 9,058,129 B2

9

providing a computing environment, including a micropro-
cessor, for use by multiple actors during development of
a software application, wherein the computing environ-
ment is configured to display a business view, an archi-
tectural view and a code implementation view, each
view tied to the same software application and represent-
ing a different phase of the software application life
cycle;

providing a plurality of metadata,

wherein each metadata is associated with a particular
view, and automatically generated when that particu-
lar view is created,

wherein when a change is made to a view of the software
application, a metadata associated with the view is
modified in accordance with modified relationships
among components within that view, wherein the
modified relationships are re-computed in response to
the change using a set of algorithms, and

wherein the change is automatically propagated to meta-
data associated with the other views; and

providing a rules engine including a metadata mapping

component, wherein the metadata mapping component
includes a defined semantic mapping among the differ-
ent views;

wherein, upon determining that a metadata associated with

a particular view has been modified, the rules engine

uses the metadata mapping component to

automatically validate the metadata associated with the
modified view with metadata associated with the
other views in accordance with a plurality of rules and
the defined semantic mapping, and

indicate any conflict between the modified view and the
other views before allowing the change to be made to
the metadata associated with the other views.

9. The method of claim 8, wherein the defined semantic
mapping is used by the system to correlate changes across the
different views; and

wherein if a metadata associated with a view is updated by

an actor, the metadata mapping component is used by the
rules engine to detect any violation of the constraints
defined by metadata associated with the other views.

10. The method of claim 8, wherein the software applica-
tion defines a business workflow, and wherein metadata asso-
ciated with the business view defines one or more start nodes
of the business workflow.

11. The method of claim 8, wherein the metadata of the
views are defined using one of a semi-structural language.

12. The method of claim 11, wherein the semi-structural
language is extensible markup language (XML).

13. The method of claim 8, where each metadata indicates
associated resources and sequences of access to the associ-
ated resources for the software application.

14. The method of claim 8, wherein the metadata associ-
ated with the architectural view is configured to create a graph
for discovering potential deadlocks in a design phase of the
software application life cycle.

15. A non-transitory computer readable storage medium,
including computer readable instructions stored thereon,
which when read and executed by a computer, cause the
computer to perform the steps comprising:

10

15

20

25

30

40

45

50

55

10

providing a computing environment, including a micropro-
cessor, for use by multiple actors during development of
a software application, wherein the computing environ-
ment is configured to display a business view, an archi-
tectural view and a code implementation view, each
view tied to the same software application and represent-
ing a different phase of the software application life
cycle;

providing a plurality of metadata,

wherein each metadata is associated with a particular
view, and automatically generated when that particu-
lar view is created,

wherein when a change is made to a view of the software
application, a metadata associated with the view is
accordingly modified in accordance with modified
relationships among components within that view,
wherein the modified relationships are re-computed
in response to the change using a set of algorithms,
and

wherein the change is automatically propagated to meta-
data associated with the other views; and

providing a rules engine including a metadata mapping

component, wherein the metadata mapping component
includes a defined semantic mapping among the differ-
ent views;

wherein, upon determining that a metadata associated with

a particular view has been modified, the rules engine

uses the metadata mapping component to

automatically validate the metadata associated with the
modified view with metadata associated with the
other views in accordance with a plurality of rules and
the defined semantic mapping, and

indicate any conflict between the modified view and the
other views before allowing the change to be made to
the metadata associated with the other views.

16. The non-transitory computer readable storage medium
of claim 15, wherein the defined semantic mapping is used by
the system to correlate changes across the different views;
and

wherein if a metadata associated with a view is updated by

an actor, the metadata mapping component is used by the
rules engine to detect any violation of the constraints
defined by metadata associated with the other views.

17. The non-transitory computer readable storage medium
of claim 15, wherein the software application defines a busi-
ness workflow, and wherein metadata associated with the
business view defines one or more start nodes of the business
workflow.

18. The non-transitory computer readable storage medium
of claim 15, wherein the metadata of the views are defined
using extensible markup language (XML).

19. The non-transitory computer readable storage medium
of claim 15, wherein each metadata indicates associated
resources and sequences of access to the associated resources
for the software application.

20. The non-transitory computer readable storage medium
of claim 15, wherein the metadata associated with the archi-
tectural view is configured to create a graph for discovering
potential deadlocks in a design phase of the software appli-
cation life cycle.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. : 9,058,129 B2 Page 1 of 1
APPLICATION NO. 1 117273674

DATED : June 16, 2015

INVENTORC(S) : Sengupta

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

In the Specification

In columns 5-6, line 7, delete “should be selected to™ and insert -- should be selected to avoid a

Warning, --, therefor.

Signed and Sealed this
Twelfth Day of April, 2016

Tecbatle X Zen

Michelle K. Lee
Director of the United States Patent and Trademark Office

